Lack of long-term β-cell glucotoxicity in vitro in pancreatic islets isolated from two mouse strains (C57BL/6J; C57BL/KsJ) with different sensitivities of the β-cells to …

C Svensson, S Sandler… - Journal of …, 1993 - joe.bioscientifica.com
C Svensson, S Sandler, C Hellerström
Journal of endocrinology, 1993joe.bioscientifica.com
Previous studies have shown that 4 weeks after syngeneic transplantation of a suboptimal
number of islets into either C57BL/6J (BL/6J) or C57BL/KsJ (BL/KsJ) diabetic mice there is
an impaired insulin secretion by the perfused grafts. After normalization of the blood glucose
level with a second islet graft, the BL/6J strain showed restored insulin secretion whilst that
of the BL/KsJ strain remained impaired. The aim of the present work was to study the effects
of glucose on the in-vitro function of islet β-cells from these two mouse strains, with different …
Abstract
Previous studies have shown that 4 weeks after syngeneic transplantation of a suboptimal number of islets into either C57BL/6J (BL/6J) or C57BL/KsJ (BL/KsJ) diabetic mice there is an impaired insulin secretion by the perfused grafts. After normalization of the blood glucose level with a second islet graft, the BL/6J strain showed restored insulin secretion whilst that of the BL/KsJ strain remained impaired. The aim of the present work was to study the effects of glucose on the in-vitro function of islet β-cells from these two mouse strains, with different sensitivities of their β-cells to glucose in vivo . Isolated pancreatic islets from each strain were kept for 1 week in tissue culture at 5·6, 11, 28 or 56 mmol glucose/l and were subsequently analysed with regard to insulin release, (pro)-insulin and total protein biosynthesis, insulin, DNA and insulin mRNA contents and glucose metabolism. Islets from both strains cultured at 28 or 56 mmol glucose/l showed an increased accumulation of insulin in the culture medium and an enhanced glucose-stimulated insulin release compared with corresponding control islets cultured at 11 mmol glucose/l. After culture at either 5·6 or 56 mmol/l, rates of (pro)insulin biosynthesis were decreased in BL/KsJ islets in short-term incubations at 17 mmol glucose/l, whereas islets cultured at 56 mmol glucose/l showed a marked increase at 1·7 mmol glucose/l. In BL/6J islets, the (pro)insulin biosynthesis rates were similar to those of the BL/KsJ islets with one exception, namely that no decrease was observed at 56 mmol glucose/l. Islets of both strains showed a decreased insulin content after culture with 56 mmol glucose/l. Insulin mRNA content was increased in islets cultured in 28 or 56 mmol glucose/l from both mouse strains. Glucose metabolism showed no differences in the rates of glucose oxidation, however, in islets cultured in 56 mmol glucose/l the utilization of glucose was increased in both BL/6J and BL/KsJ animals. There were no differences in DNA content in islets cultured at different glucose concentrations, suggesting no enhancement of cell death.
The present study indicates that, irrespective of genetic background, murine β-cells can adapt to very high glucose concentrations in vitro without any obvious signs of so-called glucotoxicity. Previously observed signs of glucotoxicity in vivo in BL/KsJ islets appear not to be related only to glucose but rather to an additional factor in the diabetic environment.
Journal of Endocrinology (1993) 136, 289–296
joe.bioscientifica.com