PIK3CA variants selectively initiate brain hyperactivity during gliomagenesis

K Yu, CCJ Lin, A Hatcher, B Lozzi, K Kong… - Nature, 2020 - nature.com
K Yu, CCJ Lin, A Hatcher, B Lozzi, K Kong, E Huang-Hobbs, YT Cheng, VB Beechar, W Zhu
Nature, 2020nature.com
Glioblastoma is a universally lethal form of brain cancer that exhibits an array of
pathophysiological phenotypes, many of which are mediated by interactions with the
neuronal microenvironment,. Recent studies have shown that increases in neuronal activity
have an important role in the proliferation and progression of glioblastoma,. Whether there is
reciprocal crosstalk between glioblastoma and neurons remains poorly defined, as the
mechanisms that underlie how these tumours remodel the neuronal milieu towards …
Abstract
Glioblastoma is a universally lethal form of brain cancer that exhibits an array of pathophysiological phenotypes, many of which are mediated by interactions with the neuronal microenvironment,. Recent studies have shown that increases in neuronal activity have an important role in the proliferation and progression of glioblastoma,. Whether there is reciprocal crosstalk between glioblastoma and neurons remains poorly defined, as the mechanisms that underlie how these tumours remodel the neuronal milieu towards increased activity are unknown. Here, using a native mouse model of glioblastoma, we develop a high-throughput in vivo screening platform and discover several driver variants of PIK3CA. We show that tumours driven by these variants have divergent molecular properties that manifest in selective initiation of brain hyperexcitability and remodelling of the synaptic constituency. Furthermore, secreted members of the glypican (GPC) family are selectively expressed in these tumours, and GPC3 drives gliomagenesis and hyperexcitability. Together, our studies illustrate the importance of functionally interrogating diverse tumour phenotypes driven by individual, yet related, variants and reveal how glioblastoma alters the neuronal microenvironment.
nature.com