
Differential histone acetylation and super-enhancer regulation
underlie melanoma cell dedifferentiation

Karen Mendelson, … , Ramon E. Parsons, Julide Tok Celebi

JCI Insight. 2024;9(6):e166611. https://doi.org/10.1172/jci.insight.166611.

 

Dedifferentiation or phenotype switching refers to the transition from a proliferative to an invasive cellular state. We
previously identified a 122-gene epigenetic gene signature that classifies primary melanomas as low versus high risk
(denoted as Epgn1 or Epgn3). We found that the transcriptomes of the Epgn1 low-risk and Epgn3 high-risk cells are
similar to the proliferative and invasive cellular states, respectively. These signatures were further validated in melanoma
tumor samples. Examination of the chromatin landscape revealed differential H3K27 acetylation in the Epgn1 low-risk
versus Epgn3 high-risk cell lines that corroborated with a differential super-enhancer and enhancer landscape.
Melanocytic lineage genes (MITF, its targets and regulators) were associated with super-enhancers in the Epgn1 low-risk
state, whereas invasiveness genes were linked with Epgn3 high-risk status. We identified the ITGA3 gene as marked by a
super-enhancer element in the Epgn3 invasive cells. Silencing of ITGA3 enhanced invasiveness in both in vitro and in
vivo systems, suggesting it as a negative regulator of invasion. In conclusion, we define chromatin landscape changes
associated with Epgn1/Epgn3 and phenotype switching during early steps of melanoma progression that regulate
transcriptional reprogramming. This super-enhancer and enhancer-driven epigenetic regulatory mechanism resulting in
major changes in the transcriptome could be important in future therapeutic targeting efforts.
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Introduction
In melanoma, a specific dedifferentiation program referred to as phenotype switching is well recognized, 
where proliferating cells, due to tumor cell intrinsic and cell extrinsic cues, shift their transcriptomes and 
become slow cycling and invasive (1–3). A hallmark of  the transcriptional programs regulating this pro-
cess is the transcription factor (TF) microphthalmia-associated TF (MITF). MITF is a melanocytic lineage 
identity gene. In melanoma, it promotes cell proliferation, differentiation, and survival; regulates genes in 
the pigmentation pathway; and suppresses invasion and senescence (3). Dedifferentiation is associated with 
loss of  MITF, its target genes and regulators, metastasis (4), intrinsic resistance to mitogen-activated protein 
kinase (MAPK) inhibitors (5), and immunotherapy resistance (6). In addition to MITF, SOX10 is another 
TF associated with proliferative cellular states, whereas AP1 and TEAD family members are associated 
with invasive cellular states (7, 8). High levels of  AP1, EGFR, NGFR, and WNT are recognized as dedif-
ferentiation markers (7, 9–11). Based on single-cell RNA-Seq, a 4-stage model has been described beyond 
the 2 states (proliferative and invasive); melanocytic, transitory, neural crest–like, and undifferentiated (12). 
Similarly, 2 main states (proliferative and invasive) and an intermediary status have also been proposed (13). 
While transcriptional reprogramming during dedifferentiation or phenotype switching is well recognized, 
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cellular state. We previously identified a 122-gene epigenetic gene signature that classifies primary 
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suggesting it as a negative regulator of invasion. In conclusion, we define chromatin landscape 
changes associated with Epgn1/Epgn3 and phenotype switching during early steps of melanoma 
progression that regulate transcriptional reprogramming. This super-enhancer and enhancer-
driven epigenetic regulatory mechanism resulting in major changes in the transcriptome could be 
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mechanisms affecting the transcriptional output of  the cell such as those involving the epigenome are largely 
uncharacterized. Additionally, reprogramming that occurs in the early stages of  melanoma progression is 
less studied. The majority of  the studies have been in the metastatic setting.

We have previously reported an epigenetic gene signature (122-epigenetic genes) that classifies prima-
ry cutaneous melanomas into 2 major categories; low- (Epgn1) and high-risk (Epgn3) subsets (14). These 
data suggest that epigenome deregulation could underlie this process. As we dissected the epigenetic gene 
groups, we uncovered that Epgn1 and Epgn3 subsets correlate with proliferative and invasive cellular states 
of  phenotype switching, respectively. Here, we investigated the chromatin landscape changes and epigenetic 
mechanisms underlying these states.

Results
An epigenetic gene signature (Epgn1/Epgn3) underlies melanoma cell dedifferentiation (or phenotype switching). 
To investigate the transcriptomes of  melanoma cell lines that represent Epgn1 and Epgn3 groups, we 
first examined the expression of  the 122–epigenetic gene signature in 12 BRAF V600 mutant cell lines 
derived from human primary cutaneous melanomas using a customized NanoString array (Supplemental 
Table 1.1 and 1.2; supplemental material available online with this article; https://doi.org/10.1172/jci.
insight.166611DS1). Unsupervised hierarchical clustering validated 2 groups, Epgn1 (n = 6) and Epgn3 (n 
= 6) (Supplemental Figure 1A). We next employed bulk RNA-Seq to examine the transcriptomes of  the cell 
lines identified as Epgn1 (n = 3; WM35, YUPEET, WM983A) or Epgn3 (n = 2; WM1552C, YUCHIME), 
as well as primary melanocytes (n = 2). Principal component analysis (PCA) revealed the separation of  pre-
dicted experimental groups (Supplemental Figure 1B). RNA-Seq defined n = 4,608 differentially expressed 
genes between Epgn1 versus Epgn3 subsets (q < 0.05, Benjamini-Hochberg procedure and a linear fold-
change ± 1.5; Supplemental Table 1.3). Unsupervised hierarchical clustering using epigenetic genes dif-
ferentially expressed between the groups (n = 5) validated the Epgn1 and Epgn3 subsets (Figure 1A). Of  
importance, we noted that Epgn1/Epgn3 clustering is similar to the gene signature clustering of  prolifer-
ative and invasive genes underlying phenotype switching described by Hoek et al. (2). Utilizing Hoek’s 
signature, we were able to cluster these cell lines based on increased expression of  proliferative genes (i.e., 
SOX10, MITF, CDK2) in the Epgn1 and invasive genes (i.e., EGFR, WNT5A, PDGFC, CDH2, ZEB1) in 
the Epgn3 groups (Figure 1B). The melanocyte lineage-specific MITF — along with other pigmentation 
pathway genes, many of  which also belong to the proliferative gene subset (i.e., SOX10, MLANA, PMEL, 
TYR, DCT, TYRP1) — were observed as upregulated in the Epgn1 state (Figure 1C). High MITF protein 
expression in the Epgn1 cells and low-level, if  any, expression in the Epgn3 cells was confirmed by Western 
blotting (Supplemental Figure 1C).

Of  interest, we observed increased expression of  genes involved in adhesion and remodeling, such as 
collagen family members (i.e., COL1A1, COL5A1, COL6A1, COL7A1) and integrins (i.e., ITGA1, ITGA2, 
ITGA3, ITGA5, ITGA6, ITGA8, ITGB10, ITGB1, ITGAV) in the Epgn3 group (Figure 1, D and E). To 
validate the transcriptomic data, a reverse-phase protein array (RPPA) analysis was performed. Proteins 
such as HES1, MDM2, ERBB3, BAP1, PARP1, SOX2, and KIT were upregulated in the Epgn1 cell lines 
corresponding to the genes observed as upregulated in the Epgn1 cellular state by RNA-Seq. By contrast, 
proteins such as AXL, STAT3, ITGA2, NRG1, JUN, SMAD1, ANXA7, SERPINE, and EGFR were 
upregulated in the Epgn3 cell lines corresponding to invasive genes upregulated in this group (Figure 1F 
and Supplemental Table 1.4). Gene set enrichment analysis (GSEA, KEGG pathways) indicated an upreg-
ulation of  DNA- and RNA-mediated pathways, including DNA replication, DNA repair, mRNA process-
ing, transcription, mRNA splicing, cell cycle mitosis, and meiosis in the Epgn1 state. Pathways involved in 
invasion, including epithelial-mesenchymal transition, integrin signaling, angiogenesis, focal adhesion sig-
naling, and inflammatory processes, were upregulated in the Epgn3 group (Figure 1G). To further validate 
the association between Epng1 and Epng3 signatures with the proliferative and invasive genes underlying 
phenotype switching, respectively, we examined their correlation using RNA-Seq of  The Cancer Genome 
Atlas (TCGA) of  cutaneous melanoma data set (n = 473) via single-sample GSEA (ssGSEA). This analysis 
showed a significant correlation of  Epgn1 signature with the proliferative genes (P = 1.069 × 10–6; OR, 
2.61) and Epgn3 signature with the invasive genes (P =8.595 × 10–6; OR, 2.46; Figure 1H). In summary, 
we provide evidence that an epigenetic gene signature (Epgn1/Epgn3) is associated with proliferative and 
invasive signatures (phenotype switching) in primary melanoma cell lines and TCGA melanomas. These 
data suggest epigenome deregulation underpinning these processes (1).
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The GSEA pathway analysis indicated a number of  signaling pathways that were not previously charac-
terized in detail as part of  the phenotype switching transcriptome. We found genes related to DNA replica-
tion, transcription, mRNA processing, DNA repair, cell cycle mitosis, adhesion, remodeling, and integrins, 
inflammation, adhesion, and hypoxia (Supplemental Figure 2, A–N). In aggregate, these transcriptomic 

Figure 1. Epigenetic gene signature classifier (Epgn1/Epgn3) underlies reprogramming of melanoma cells from a proliferative to an invasive cellular state. 
RNA-Seq of Epgn1 cell lines (n = 3; WM35, YUPEET, WM983A) and Epgn3 cell lines (n = 2; WM1552C, YUCHIME). The top bar indicates cellular subtypes (Epgn1 
[red] and Epgn3 [light blue]) as characterized by the 122-epigenetic signature (Supplemental Figure 1A). Each row of the heatmap indicates a differentially 
expressed gene, and each column represents a BRAFV600 mutant cell line (n = 5; each in triplicate). Differentially expressed genes are significant if q < 0.05 
by Benjamini-Hochberg procedure and a linear fold-change ± 1.5. The heatmaps are color-coded on the basis of Z scores. (A) Supervised hierarchical clustering 
of 122 epigenetic genes and identification of Epgn1 and Epgn3 groups. (B) RNA-Seq analysis identifies increased expression of proliferative and differentiation 
genes (MLANA, TYR, DCT, MITF) in the Epgn1 group and increased expression of invasive genes (WNT5A, ITGA2, ZEB1, EGFR, ITGA3, PDGFC, NRP, AXL) in 
the Epgn3 group using the Hoek proliferative and invasive gene signature (2). (C) Pigmentation pathway genes (MITF, MLANA, PMEL, TYR, DCT, TYRP1) were 
uniformly upregulated in Epgn1 cells. (D and E) Differential expression of genes involved in epithelial mesenchymal transition (EMT) and integrin signaling. (F) 
Heatmap of 51 significantly differentially expressed proteins (after multitesting correction at FDR 5%) determined by reverse phase protein array (RPPA) coin-
cides with transcriptional data. (G) GSEA pathway analysis. Pathways are abbreviated as follows: K, KEGG; R, Reactome; H, Hallmark; P, Pathway Interaction 
Database. (H) RNA-Seq data set of TCGA melanomas (n = 473). ssGSEA analysis depicting correlation between the upregulated Epng1 gene signature with the 
proliferative genes (P = 1.069 × 10–6; OR, 2.61), and the upregulated Epgn3 signature with the invasive genes (P = 8.595 × 10–6; OR, 2.46).
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data suggest that signals related to the pigmentation pathway machinery and DNA replication process-
es dominate in the Epgn1 proliferative cells. In contrast, epithelial-to-mesenchymal transition, integrin, 
hypoxia, angiogenesis, and proinflammatory signals dominate in the Epgn3 invasive cells.

An epigenetic gene signature (Epgn1/Epgn3) classifies human primary melanomas into low- versus high-risk 
groups. We previously published on the identification of  the 122-epigenetic gene classifier (Epgn1/Epgn3) 
and its association with low- versus high-risk primary melanomas (n = 51) (14). Here, we sought to validate 
the classifier in a larger cohort (n = 205) of  primary cutaneous melanomas > 1.0 mm in thickness (Supple-
mental Tables 2.1 and 2.2). We excluded acral and uveal melanomas and those with distant metastasis. The 
AJCC eighth edition staging system was used for clinical and pathological classification. The new cohort 
was composed of  invasive melanomas with tumor thicknesses greater than 1.0 (>T1; Supplemental Table 
2.1), the most difficult group of  tumors to prognosticate. The mean, as well as the median tumor thickness, 
was 3.0 mm. Tumors were in intermediate (T2, 1.01–2.0 mm, n = 49; T3, 2.01–4.0 mm, n = 91) and thick 
(T4, >4.0 mm, n = 65) thickness categories. The majority were stage II cases (n = 110). Overall survival was 
67 months (mean) and 57.5 months (median) (alive, n = 109; dead, n = 80; and unknown, n = 16).

RNA was isolated from formalin-fixed paraffin-embedded (FFPE)tumors (n = 205). The expression 
of  118 of  122 epigenetic genes from our original signature (14), along with the TP53 family and house-
keeping genes (Supplemental Table 1.2), was assayed on a custom array using the NanoString platform 
(Figure 2A). For data analysis, we first cross-interrogated the NanoString platform versus RNA-Seq in 
classifying the Epgn1/Epgn3 groups using 24 samples from the original study (14) (Supplemental Table 
2.3). We validated 78 epigenetic genes of  118 that showed differential expression between the groups at 
FDR 5% with both technologies (Supplemental Figure 3A and Supplemental Tables 2.4 and 2.5). To 
classify the new cohort of  205 samples on the NanoString platform, we next developed a melanoma risk 
score and a classifier that distinguishes tumors as Epgn1 (low-risk) or Epgn3 (high-risk). To identify the 
epigenetic genes correlating with overall survival (OS) and progression-free survival (PFS), we performed 
univariate Cox analysis for OS and PFS for each of  the 118 epigenetics genes in the 205 samples. We 
identified 21 nominally significant genes associated with OS and 12 nominally significant genes associated 
with PFS (Supplemental Tables 2.6 and 2.7). Since there are partial correlations between gene expression, 
a 50–cross-validated relaxed LASSO regression analysis as well as a stepwise procedure was conducted to 
reduce the number of  genes and select those with a nonzero coefficient in a multivariate Cox regression 
model. The multivariate Cox OS model, the 50–cross-validated relaxed LASSO analysis, as well as the 
stepwise procedure, identified a combination of  3 genes — HIST1H2BL, MGEA5, and TFB2M — as our 
melanoma risk score (Supplemental Table 2.8).

In order to transition our melanoma risk score into a classifier, we identified the optimal threshold at 
0.18 that gives us the lowest confusion matrix from the original discovery cohort data set. Using this optimal 
cutoff  threshold (0.18), our melanoma OS risk classifier in the new 205 samples showed an OS of  56 months 
for patients in the Epgn3 group and 114 months for patients in the Epgn1 group (P = 2 × 10–4; Figure 2B) and 
predicted a PFS of  29 months for the Epgn3 group and 75 months for the Epgn1 group (P = 1 × 10–4; Supple-
mental Figure 3B). Additionally, the OS risk score and the Epgn1/Epgn3 classifier correlated with the TP53 
family of  genes (TP53, TP63, and TP73), similar to our previous report (Figure 2C and Supplemental Table 
2.9) (14). When AJCC parameters were examined, Epgn3 tumors were thicker (Figure 2D), more likely to 
be ulcerated (Figure 2E), and had higher AJCC staging (Figure 2F). While tumor thickness, age at diagnosis, 
and survival status were statistically significant between the 2 groups, sex and primary tumor location were 
not (Supplemental Figure 3, C–G). Next, we added AJCC clinical staging (stages I–III) or tumor thickness 
categories (T2–T4) to our OS risk score to determine if  collinearity exists between the AJCC parameters 
and our OS risk model. We found that our OS risk classifier composed of  3 genes is complementary to the 
AJCC parameters (Supplemental Table 2.10). Indeed, we improved the discrimination between better OS 
and poor OS mainly for patients in stage II and stage III disease (P = 0.0002 and P = 0.001; Figure 2G) and 
with T3 tumor thickness category (P = 0.0002; Figure 2H). We also noted that patients classified as Epgn1/
stage III have similar OS as those in the Epgn3/stage II group (Figure 2G).

Overall, these results validate our Epgn1/Epgn3 classifier (122 or 3 genes) in distinguishing low- versus 
high-risk cases in a new independent cohort of  primary cutaneous melanomas consisting of  tumor thick-
ness (>1.0 mm) and clinical stage categories (majority in stages II and III) that are the most challenging to 
prognosticate. The reduced number of  genes (3 genes) and the OS risk score may be employed as biomark-
ers for Epgn1/Epgn3 and may be relevant to phenotype switching in early disease.
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Deregulation of  H3K27 acetylation is a dominating epigenetic mechanism in Epgn1 low-risk and Epgn3 high-
risk states (or during melanoma cell dedifferentiation). Since Epgn1/Epgn3 groups modeled in the cell lines 
(Figure 1) and tissues (Figure 1H and Figure 2) are classified based on this 122-epigenetic gene signature 
that suggests epigenome deregulation, we sought to understand cis-regulatory elements of  gene regulation 

Figure 2. Epgn1/Epgn3 gene signature classifies primary melanoma tumor samples into low- versus high-risk groups. (A) Heatmap of a cohort of primary 
cutaneous melanoma samples (n = 205). The heatmap depicts expression of 118 epigenetic genes from our signature along with TP53 family and housekeep-
ing genes. Each row of the heatmap indicates a differentially expressed gene (n = 118), and each column represents a tumor sample (n = 205). The status bar 
indicates the classifier: Epgn1 (gold) and Epgn3 (light blue). The overall survival (OS) risk score, AJCC thickness, ulceration, stage, and OS (number of months) 
is color-coded as indicated. (B) Kaplan-Meier survival curves for Epgn1 (gold) and Epgn3 (blue) subgroups. (C) Heatmap showing the minimum number of epi-
genetic genes (HIST1H2BL, MGEA5, TFB2M) that correlated with OS. Correlation with our OS risk score allows for the identification of our 2 groups Epgn1 (gold) 
and Epgn3 (blue). TP53, TP63, and TP73 gene expression are depicted. Cox regression model was used. (D) The AJCC tumor thickness in the Epgn1 group versus 
the Epgn3 group (P = 0.0108). (E) Ulceration in the Epgn1 group versus the Epgn3 group (P = 0.0238). (F) Stage in the Epgn1 group versus the Epgn3 group (P 
= 0.00132). One-way ANOVA test was used (D–F). (G) Kaplan-Meier curve showing the Epgn1/Epgn3 risk classifier in discriminating better versus poor OS by 
Stage. (H) Kaplan-Meier curve showing the Epgn1/Epgn3 risk classifier in discriminating better versus poor OS for patients with T3 tumors (P = 0.0002).
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underlying phenotype switching. We first examined the major histone marks associated with either active 
or repressed transcriptional states in Epgn1 and Epgn3 cells by Western blotting of  the chromatin fraction. 
We noted a consistent decreased histone 3 lysine 27 acetylation (H3K27ac) in the Epgn3 cells (Figure 
3A). Other histone marks that were assayed (H3K9ac, H3K18ac, H3K4me3, and H3K9me3 in Figure 3A; 
H3K4me1, H3K9me2, H3K27me3, and H3K36me3 in Supplemental Figure 4) did not show major con-
sistent differences between the 2 cell line groups. IHC confirmed low levels of  H3K27ac in the Epgn3 cell 
lines compared with the Epgn1 lines (Figure 3, B and C).

We next sought to investigate the super-enhancer and enhancer landscape in the Epgn1/Epgn3 cell 
lines using H3K27 acetylation — a marker of  active enhancers. We employed ChIP-Seq for H3K27ac 
using Epgn1 (WM35 and YUPEET) and Epgn3 cell lines (WM1552C and YUCHIME). PCA revealed 
the separation of  experimental groups based on their chromatin activity profile, similar to the clus-
tering observed by RNA-Seq (Figure 3D). Differential peak analysis defined a total of  85,858 peaks: 
7,924 (9%) upregulated peaks in the Epgn3 group and 31,511 (37%) downregulated peaks in the Epgn3 
group (upregulated in the Epgn1 group) (Figure 3E). A total of  2,220 Epgn3-specific enhancers and 83 
super-enhancers were identified in the Epgn3 cell lines, and 9,074 Epgn1-specific enhancers and 533 
super-enhancers were identified in the Epgn1 cell lines (Figure 3, F–H) (Supplemental Tables 3.1–3.4.), 
suggesting a reorganization of  the enhancer landscape in Epgn3 versus Epgn1 states. Next, we associat-
ed super-enhancers and enhancers with nearby genes; we identified 308 and 2,792 Epgn3 genes, respec-
tively, and 1,418 and 3,179 Epgn1 genes, respectively (Supplemental Tables 3.1–3.4). GSEA (KEGG 
pathway) analysis showed that nearby genes associated with super-enhancers/enhancers were involved 
in cell motility and invasion-related pathways such as focal adhesion, PI3K/Akt signaling, and actin 
cytoskeleton in the Epgn3/invasive cell lines. By contrast, those associated with MITF regulation and 
DNA-mediated processes were observed in the Epgn1/proliferative cell lines (Figure 3I). Taken togeth-
er, these findings suggest that substantial reorganization of  the epigenetic landscape underlie Epgn1 
low-risk/proliferative and Epgn3 high-risk/invasive cellular states.

Super-enhancers are associated with melanocytic lineage-specific genes in the Epgn1 low-risk/proliferative melanoma 
cells lines and invasion genes in the Epgn3 high-risk/invasive cell lines. Super-enhancers have the potential to acti-
vate oncogenic transcription and tend to be associated with genes that control and define cell identity. We 
identified several super-enhancers associated with genes belonging to the MITF-dependent pigmentation 
pathway in the Epgn1 cell lines (Figure 4A). In contrast, super-enhancers associated with invasive genes 
were identified in the Epgn3 cell lines (Figure 4B). We show representative examples of  super-enhancer 
elements mapping upstream of  the Epgn1 genes, such as SOX10 (Figure 4C), MITF (Figure 4D), SLC24A5 
(Figure 4E), PMEL (Figure 4F), and DCT (Figure 4G), which have higher H3K27ac super-enhancer peaks 
corresponding to higher RNA-Seq gene expression in the Epgn1 cell lines than in the Epgn3 cell lines. In 
contrast, we show examples of  super-enhancers that map upstream of  the Epgn3 genes, including VEGFC 
(Figure 4H), NRP1 (Figure 4I), and ITGA3 (Figure 4J), which have higher H3K27ac super-enhancer peaks 
corresponding to higher RNA-Seq gene expression in the Epgn3 cell lines than in the Epgn1 cell lines.

Alterations in TF activity regulate gene expression programs. We next performed TF motif  anal-
ysis in the Epgn1/Epgn3-specific enhancers (using HOMER v.4.11 suites) that identified MITF as the 
top-ranked motif  associated with Epgn1 enhancers (Figure 4K and Supplemental Table 3.5) and AP1 
motifs associated with Epgn3 enhancers (Figure 4L and Supplemental Table 3.6). Our findings are 
consistent with previous reports identifying MITF and AP-1/TEADs as regulators of  the proliferative 
and invasive cellular states in melanoma (7, 15), while recognizing some novel TF genes that have not 
previously been linked to these processes. In aggregate, through ChIP-Seq of  H3K27ac and RNA-Seq 
analyses, we show that differential regulation of  super-enhancers/enhancers and corresponding chang-
es in the activity of  the master regulatory genes drive dynamic transcriptional changes in distinct cellu-
lar states; Epgn1 low-risk/proliferative cellular state or Epgn3 high-risk/invasive state.

ITGA3 is regulated by a super-enhancer region in Epgn3 cell lines and acts as a suppressor of  invasiveness. To 
assess the functional effect of  Epgn3 genes associated with super-enhancers, we selected 5 Epgn3 gene can-
didates not previously implicated in melanoma pathogenesis and tested them in a loss-of-function in vitro 
invasion assay. We transiently transfected primary melanoma cell lines, WM1552C and YUCHIME, with 
separate siRNA pools against each of  the 5 candidates and performed in vitro Boyden chamber invasion 
assay. The loss of  one of  the candidates, ITGA3, displayed a robust phenotype and showed a significantly 
increased invasion of  cells into the Boyden chambers (Figure 5, A–C). Based on this effect of  ITGA3 on 
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Figure 3. Reorganization of super-enhancer and enhancer landscape in Epgn1/Epgn3 melanoma cells. (A) Immunoblotting of the chromatin fraction of 
Epgn1 and Epgn3 cells for H3K27ac, H3K18ac, H3K9me3, H3K9ac, and H3K4me3. Total H3 indicates loading. (B) IHC of H3K27ac in YUPEET, a representative 
Epgn1 cell line and YUCHIME, a representative Epgn3 cell line. Scale bars: 50 μm (left), 25 μm (right). (C) Quantification of data generated in 2 Epgn1 cell 
lines WM983A and YUPEET (red) as compared with 2 Epgn3 cell lines WM902B and YUCHIME (light blue). P = 0.0004. One-way ANOVA test was used. (D 
and E) ChIP-Seq for H3K27ac using representative Epgn1 cells, WM35 and YUPEET, and representative Epgn3 cells, WM1552C and YUCHIME. PCA plot indi-
cating the separation of groups. Volcano plot showing a total of 85,858 peaks from differential peak analysis: 7,924 upregulated peaks in the Epgn3 group, 
and 31,511 downregulated peaks in the Epgn3 group (upregulated in the Epgn1 group). (F) Heatmap of differential peak analysis. Data are presented on ± 5 
kb around the peak center. DiffBind package was used. (G) Heatmap of differential enhancer analysis. Data are centered on ± 5 kb window. A total of 2,220 
significant enhancers were identified in the Epgn3 cell lines and 9,074 significant enhancers were identified in the Epgn1 cell lines. (H) Heatmap of differ-
ential super-enhancer analysis. Data are shown ± 1 kb upstream and downstream of the super-enhancer. A total of 83 and 533 significant super-enhancers 
were identified in the Epgn3 and Epgn1 cell lines, respectively. ROSE algorithm was used. (I) GSEA (KEGG pathway) analysis identifies super-enhancers and 
enhancers associated with functional pathways. K, KEGG; E, Elsevier.
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cellular invasion and its super-enhancer profile in the Epgn3 invasive cell lines, we further investigated its 
role in melanoma biology.

ITGA3 is one of  the genes for phenotype switching described by Hoek et al. (2) (Figure 1B), and in this 
study, we identified it as an integrin transcriptionally upregulated in the Epgn3 invasive cell lines (Figure 
1E). We found a large super-enhancer region extending from the gene body to about 20 Kb upstream in the 
MITF-low Epgn3 cell lines (WM1552C and YUCHIME), whereas MITF-high Epgn1 cell lines (WM35 
and YUPEET) show a markedly reduced H3K27ac levels correlating with lower ITGA3 expression levels 
(Figure 5D). The neighboring gene, PICART1, is not expressed in our cell lines and, thus, is unlikely to 
be regulated by this super-enhancer. ITGA3 has higher H3K27ac super-enhancer peaks corresponding to 
higher RNA-Seq gene expression peaks in the Epgn3 cell lines than the Epgn1 cell lines. Additionally, using 
published H3K27ac ChIP-Seq data, we identified this super-enhancer in the MITF-low metastatic melano-
ma cell lines (SKmel147, A375, and LOX IMVI) and found loss of  H3K27ac in the MITF-high metastatic 
melanoma cell lines (501MEL, SKmel2, SKmel5, and SKmel239) (7, 8, 15) (Figure 5D).

Based on ChIP-Seq and ATAC-Seq analyses, we identified constituent enhancers within the ITGA3 
super-enhancer (Figure 5E). We further performed motif  analysis within a 200 bp window around the ATAC 
peak summit and identified the TF AP1 and its family member TEAD1 among the top 5 ranked TFs corre-
sponding to the constituent enhancers (Supplemental Figure 5) (15). Enrichment profiles for H3K27ac, ATAC-
Seq, FOSL2 ChIP-Seq, and TEAD4 ChIP-Seq in the SKmel147 cell line further support the involvement of  
the AP1 and TEAD TFs in regulating the ITGA3 super-enhancer (Figure 5E). Regions of overlap between the 
ATAC-Seq, FOSL2, and TEAD4 peaks within the H3K27ac super-enhancer region indicated that the ITGA3 
super-enhancer is bound by FOSL2 and TEAD4, thus suggesting that AP1 may be regulating ITGA3 (Figure 
5E) and coinciding with our finding of AP1 transcription family members as the top-ranked motifs associated 
with Epgn3 enhancers (Figure 4L). In contrast, in the MITF-high cell line 501MEL, the absence of MITF 
ChIP-Seq peaks indicated that the ITGA3 super-enhancer is not bound by MITF (Figure 5E).

At the transcriptional level, metastatic cell lines designated as Epgn1 (n = 3) based on high expression of  
MITF and other proliferation and pigmentation pathway genes showed low expression of  ITGA3, whereas 
metastatic cell lines identified as Epgn3 (n = 3), based on low MITF expression and high expression of  inva-
sion genes, showed high ITGA3 transcript levels. There was anticorrelation between MITF and ITGA3 (P = 
0.0125, Figure 6A and Supplemental Figure 6A). Similar findings were noted in Cancer Cell Line Encyclo-
pedia (CCLE) melanoma cell lines (n = 25) and an anticorrelation between MITF and ITGA3 was present 
(P = 0.002, OR, –0.54, Figure 6B). We next examined bulk RNA-Seq data from TCGA melanoma tumor 
samples (n = 473), and the relationship between the proliferative, invasive, Epgn1, and Epgn3 signatures 
with MITF and ITGA3 (Figure 6C). We identified a correlation between proliferation signature and MITF 
(0.69; P < 2.2 × 10–16) and the Epgn1 signature (0.1; P = 0.02), and we identified an anticorrelation between 
the proliferation and Epgn3 signatures (–0.385; P < 2.2 × 10–16). We found an anticorrelation between the 
invasion signature and MITF (–0.61; P < 2.2 × 10–16) and the Epgn1 signature (–0.41; P < 2.2 × 10–16) and a 
correlation between the invasion and Epgn3 signatures (0.17; P = 2.9 × 10–4) and ITGA3 (0.145, P = 1.6 × 
10–3). Of  clinical importance, we identified increased ITGA3 gene expression in AJCC T4 versus T1 tumors 
(P = 0.06) (Figure 6C). To further substantiate the transcriptomic data in cell lines at the protein level, West-
ern blotting for ITGA3 in a panel of  primary and metastatic melanoma cells was performed, which con-
firmed the anticorrelation of  ITGA3 with MITF (Figure 6, D–F, and Supplemental Figure 6, B–D). Thus, 
both at transcript and protein levels, MITF-high cells showed low levels of  ITGA3, whereas MITF-low cells 
expressed high ITGA3 levels (Figure 6, A–F, and Supplemental Table 1.1).

We next examined the role of  ITGA3 on tumorigenesis and tumor cell invasiveness in vivo. Utiliz-
ing CRISPR-Cas9 genome editing, we generated models of  ITGA3 loss in the murine melanoma YUM-
MER1.7 (BrafV600E/WT, Pten–/–, Cdkn2–/–) cell line and in the human metastatic melanoma SKmel147 cell 
line. Immunoblotting was performed to assess ITGA3 protein levels. YUMMER1.7 melanoma cells sta-
bly expressing a nontargeted control (NTC) or ITGA3 KO were injected s.c. into the flanks of  syngeneic 
C57BL/6J mice, and tumor volume was measured. Mice injected with ITGA3-KO YUMMER1.7 cells 
showed a significant increase in tumor growth compared with mice injected with the NTC (Figure 6G), 
indicating that loss of  ITGA3 confers increased tumorigenesis. We next examined a metastatic human 
melanoma cell line SKmel147 in experimental metastasis models. SKmel147 luciferase–expressing ITGA3 
NTC versus KO cells were delivered via tail vein or intracardiac injection of  immunocompromised mice 
(NOD/SCID/IL2γR−/−) and analyzed by IVIS imaging, which showed increased seeding and metastatic 
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burden to the lungs or the liver, respectively, in ITGA3-KO cells (Figure 6, H and I). These data provide 
evidence that ITGA3 negatively regulates tumor cell invasiveness in the in vivo setting. In aggregate, these 
findings suggest that ITGA3 is associated with super-enhancer–mediated regulation during melanoma 
cell dedifferentiation (phenotype switching) and in Epgn1/Epgn3 states. Its expression anticorrelates with 
MITF, and its upregulation and overexpression in the Epgn3 high-risk/invasive cellular state are suppres-
sive for invasiveness, tumor growth, and metastatic potential.

Discussion
Super-enhancers are clusters of  enhancers that are binding sites for master transcription regulators enriched 
for active histone modifications (H3K27ac, H3K4me1) and the Mediator complex (16). Super-enhancer–
driven genes are expressed at higher levels than those under the control of  regular enhancers and are associ-
ated with developmentally regulated genes that specify cell identity (16). Here, we found MITF, a melano-
cytic cell lineage TF, as well as its regulators and targets associated with H3K27ac-marked super-enhancers 
and high gene expression in the Epgn1 low-risk/proliferative cellular state that is reorganized in the Epgn3 
high-risk invasive state. While MITF and other TFs are essential for the development and homeostasis 
of  the melanocyte lineage, they also play important roles during melanoma initiation and progression, 
and they are well characterized during phenotype switching. Our findings corroborate with epigenome 
regulation of  lineage-specific genes and highlight this mechanism of  gene regulation during melanoma 
cell dedifferentiation or phenotype switching as dominating — a mechanism that has not been described 
previously in this context. Additionally, we identified many super-enhancers and enhancers regulating the 
transcriptional output of  the cell differentially modulated in distinct cellular states and potentially during 
the reversal of  the switch from one cellular state to another, demonstrating the essential role of  epigenome 
reprogramming. Mechanisms of  differential enhancer landscape of  proliferative/invasive states need fur-
ther studies; transcriptional factors (MITF or others) binding to the super-enhancers, histone acetylation 
(acetyl transferases and deacetyl transferases), and the role of  the BET proteins (BRD4) that may be regu-
lating the process could be further dissected. In particular, MITF as the master regulator of  the melanocyte 
lineage and the extent of  its involvement in super-enhancer regulation in this process could be examined. 
Dissecting the epigenome in-depth in the future remains of  interest, as epigenetic drugs to target melanoma 
cells in different cellular states may enhance therapeutic targeting efforts.

Melanomas fall into 4 genomic categories based on driver mutations: BRAF (50%), NRAS (25%), or 
NF1 (15%) mutant and triple WT (17). Mutational status predicts responses to BRAF and MEK inhibi-
tors rather than correlating strongly with biological behavior. Transcriptomic subtyping, however, has been 
promising in predicting patient outcomes. Our Epgn1/Epgn3 classifier separates primary cutaneous mel-
anomas into low- versus high-risk categories, correlates with AJCC staging parameters, and is an inde-
pendent predictor for OS. We found that the Epgn1/Epgn3 classifier correlates with dedifferentiation or 
phenotype switching (proliferative or invasive cellular states) based on RNA-Seq of  primary melanoma 
cell lines and TCGA melanomas. Therapeutic targeting of  phenotype switching has been challenging due 
to plasticity, the reversible switch from one state to another, and resistance due to the selection of  subpop-
ulations of  cells upon treatment. We were able to reduce our Epgn1/Epgn3 classifier from 122 genes to 3 
genes; this classifier may be helpful as a biomarker for Epgn1/Epgn3 states, dedifferentiation, or phenotype 
switching for therapy efforts in the future.

Integrins, cellular adhesion receptors for the extracellular matrix, have been implicated in essentially 
every step of  cancer progression from primary tumor formation to metastasis (18). The role of  integrins in 
cancer cell progression and metastasis is dependent on the tumor type and disease state. Here, we examined 
ITGA3, which encodes the α3 subunit that dimerizes with β1 to form the laminin-binding integrin α3β1. 

Figure 4. Super-enhancers are associated with MITF lineage genes in Epgn1/proliferative cell lines and cell motility genes in Epgn3/invasive cell lines. 
(A) Ranked order of H3K27ac normalized reads at super-enhancer and enhancer loci in Epgn1 cell lines. Super-enhancers that associated with genes 
belonging to the MITF lineage specific pigmentation pathway in the Epgn1 cell lines are shown. (B) Ranked order of H3K27ac normalized reads at super-en-
hancer and enhancer loci in Epgn3 cell lines. Super-enhancers associated with invasive genes in the Epgn3 cell lines are shown. ROSE algorithm was 
used. (C–G) UCSC genome browser captures of H3K27ac and RNA-Seq enrichment profiles are shown for selected Epgn1 genes and their super-enhancers 
including SOX10 (C); the melanocyte specific MITF isoform, mMITF (D); SLC24A5 (E); PMEL and CDK2 (F); and DCT (G). (H–J) H3K27ac traces along with cor-
responding RNA-Seq peaks are shown for selected Epgn3 genes including VEGFC (H), NRP1 (I), and ITGA3 (J). Super-enhancer regions are denoted by purple 
line. (K) The top motif and corresponding transcription factors associated with Epgn1 super-enhancers. (L) The top motifs and corresponding transcription 
factors associated with Epgn3 super-enhancers. Fisher’s exact test was used (K and L).
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Figure 5. ITGA3 suppresses invasion and is associated with super-enhancer–mediated regulation in Epgn3 cells. (A) ITGA3 immunoblot of lysates follow-
ing transfection with siControl or siITGA3. Actin was used as a loading control. (B) Representative examples of cells following invasion in a matrigel coated 
Boyden chamber model. Scale bars: 50 μm. (C) Quantification of invasion assay shown in B. Two groups are compared: siControl and siITGA3 in the Epgn3 
primary melanoma cell lines. P = 4.11 × 10–5 for WM1552C and P = 4.09 × 10–4 for YUCHIME. Mann Whitney U test was used. (D) H3K27ac ChIP-Seq peaks in 
the Epgn1 primary and metastatic cell lines (red) and in the Epgn3 primary and metastatic cell lines (blue). Super-enhancer region is denoted with a purple 
line. (E) H3K27ac, ATAC-Seq, and MITF ChIP-Seq peaks in the Epgn1 cell line 501MEL. H3K27ac, ATAC-Seq, FOSL2, and TEAD4 ChIP-Seq peaks in the Epgn3 
cell line SKmel147.



1 2

R E S E A R C H  A R T I C L E

JCI Insight 2024;9(6):e166611  https://doi.org/10.1172/jci.insight.166611

Figure 6. ITGA3 is overexpressed in Epgn3 high-risk melanomas and negatively regulates an invasive phenotype. (A) Heatmaps of proliferation, 
invasion, and pigment pathway genes MITF and ITGA3 in the metastatic melanoma cell lines. (B) Heatmaps of proliferation, invasion, and pigment 
pathway genes MITF and ITGA3 in the CCLE melanoma cell lines. (C) ssGSEA depicting correlations between proliferation, invasion, Epgn1, and Epgn3 gene 
signatures with MITF and ITGA3 (upper panel). Dot plot of the ITGA3 expression for AJCC tumor stages, T0-T4 (TCGA melanoma data set, lower panel). 
(D–F) Western blotting for ITGA3, MITF, and actin in the primary (D and E) and the metastatic melanoma cell lines (F). (G) Immunoblotting of ITGA3 and 
actin in the nontargeting control (NTC) and ITGA3-KO YUMMER1.7 cells. Tumor growth assay following the injection of the NTC and ITGA3-KO YUMMER1.7 
cells in mice. P = 0.05. (H and I) Immunoblotting of ITGA3 and actin in the NTC and ITGA3 KO SKmel147 luciferase cells (H). Tail vein (H) and intracardiac 
metastasis (I) assays following the injection of the nontargeting control NTC and ITGA3 KO cells in mice, P = 4.33 × 10–3 and P = 0.0079, respectively. Mann 
Whitney U test was used (G–I).
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Roles for α3β1 in both promoting and suppressing tumorigenesis and metastasis have been described in 
several cancer types; however, its role in melanoma is largely unknown (19). There are opposing data on 
ITGA3 expression during tumor progression in melanoma. One study reported reduced ITGA3 transcripts 
in melanoma cell lines and tumors of  regional and distant metastasis compared with primary disease (20). 
Other studies showed an opposite relationship: a correlation of  ITGA3 protein expression with tumor 
thickness (21), higher ITGA3 expression on metastatic melanoma cell lines, and higher migration rates as 
compared with primary melanoma cell lines (22). The role of  ITGA3 in the context of  phenotype switch-
ing in melanoma has never been described, to our knowledge. Our study provides evidence that ITGA3 is 
a gene involved during dedifferentiation or phenotype switching via super-enhancer regulation. ITGA3 is 
upregulated and overexpressed in the Epgn3 invasive cellular state and shows an inverse relationship with 
MITF. Our in vitro and in vivo studies show that ITGA3 is a negative regulator of  invasiveness, tumor 
progression, and metastatic potential in this context — roles that have not yet been described in melanoma. 
While this protective mechanism and how ITGA3 acts as a braker for invasiveness require further studies, 
the paper highlights integrins playing essential roles during the dedifferentiation process in primary cuta-
neous melanoma.

Methods
Sex as a biological variable. Our study examined NSG female mice with experiments using the SKmel147 

human cell line. It is expected that the findings are relevant for male mice (Figure 6, H and I). Our study 
examined C57BL/6J male mice with experiments using the YUMMER 1.7 cells (Figure 6G), since the 
parental cell line was generated in male mice. It is expected that the findings are relevant in female mice.

Patient samples and cell lines. A cohort of  patients with primary melanomas of  the skin (n = 205) 
with fully annotated clinical and pathological parameters was collected from 4 academic institutions 
(Supplemental Table 2; Icahn School of  Medicine at Mount Sinai, Moffitt Cancer Center, Colum-
bia University Medical Center, and University Hospital of  Zurich). Primary tumors stored as FFPE 
were retrieved and compiled, and histology was reviewed. Primary melanoma cell lines were obtained 
from the Wistar Institute (M. Herlyn, Philadelphia, Pennsylvania, USA): WM35, WM39, WM115A, 
WM278, WM793, WM853, WM902B, WM983A, WM1552C, WM1341D, WM1361, WM1366, 
WM1862, WM3211, WM3268, WM3282, and WM3862. The following BRAFV600 mutant melanoma 
cell lines derived from primary tumors were obtained from Yale University (R. Halaban, New Hav-
en, Connecticut, USA): YUPEET (BRAFV600E), YUCHIME (BRAFV600K), and WW165 (BRAFV600K). 
Human melanocytes were purchased from 2 sources: (a) Invitrogen primary melanocytes, HEMn-LP 
(Human Epidermal Melanocytes neonatal, lightly pigmented donor) (Thermo Fisher Scientific, C0025C), 
and (b) human epidermal melanocytes from White neonatal foreskin (Cell Applications, 104-05n). Met-
astatic cell lines SKmel2, SKmel5, and A375 were obtained from ATCC. Metastatic cell line LOX IMVI 
was obtained from Sigma-Aldrich. SKmel147 and SKmel239 were obtained from Memorial Sloan Ket-
tering Cancer Center (New York, New York, USA). Metastatic cell line 501MEL was obtained from Yale 
University. Murine melanoma cells YUMMER1.7 were obtained from Yale University (M. Bosenberg). 
HEK293T cells used for virus production were obtained from ATCC.

RNA-Seq of  melanoma cell lines and data analysis. Total RNA from cells cultured in triplicate was extract-
ed using the RNeasy Mini Kit (Qiagen). The RIN of  each sample was determined using the 2100 Bioan-
alyzer instrument (Agilent Technologies) and quantity was determined using Qubit (Thermo Fisher Sci-
entific). Total RNA was subjected to ribosomal RNA depletion using the Ribo-Zero Gold kit (Illumina). 
The resulting RNA samples were used as input for library construction using the Illumina TruSeq Total 
RNA library preparation kit (Illumina). The libraries were then sequenced on the NextSeq500 system 
(Illumina) using the 75 bp paired-end protocol. The sequencing was performed at the Oncological Sci-
ences Core Facility of  the Icahn School of  Medicine at Mount Sinai. Raw sequencing reads were aligned 
to the human genome (GRCh38.74) using STAR (23) (19.25 × 106 uniquely mapped reads per sample) 
and aligned reads assigned to transcript features using HTSeq (24). Read alignment quality measures and 
feature assessment were examined by FastQC (http://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) and RSeQC (25). Raw feature counts were normalized, and differential expression analysis was 
performed using DESeq2 and used Benjamini-Hochberg multitesting correction at 5 % to identify signif-
icant genes (26). Differential expression rank order was utilized for subsequent GSEA (27), performed 
using the fgsea package (https://bioconductor.org/packages/release/bioc/html/fgsea.html) in R. Gene 
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sets queried included the Hallmark and Canonical pathway collections available through the Molecular 
Signatures Database (MSigDB) (28).

RPPA. Cellular proteins were denatured by 1% SDS (with β-mercaptoethanol) and diluted in five 2-fold 
serial dilutions in the dilution lysis buffer. Serially diluted lysates were arrayed on nitrocellulose-coated 
slides (Grace Bio-Labs) by Aushon 2470 Arrayer (Aushon BioSystems) at MD Anderson Cancer Center. 
Total 5,808 array spots were arranged on each slide, including the spots corresponding to serially diluted (a) 
standard lysates and (b) positive and negative controls prepared from mixed cell lysates or dilution buffer, 
respectively. Each slide was probed with a validated primary antibody plus a biotin-conjugated secondary 
antibody. The signal obtained was amplified using a Dako Cytomation–Catalyzed system (Dako) and visu-
alized by DAB colorimetric reaction. The slides were scanned, analyzed, and quantified using customized 
software to generate spot intensity. Each dilution curve was fitted with a logistic model (http://bioinfor-
matics.mdanderson.org/OOMPA). This fits a single curve using all the samples (i.e., dilution series) on a 
slide with the signal intensity as the response variable, and the dilution steps are independent variables. The 
fitted curve is plotted with the signal intensities — both observed and fitted — on the y axis and the log2 
concentration of  proteins on the x axis for diagnostic purposes. The protein concentrations of  each set of  
slides were then normalized for protein loading. A correction factor was calculated by (a) median centering 
across samples of  all antibody experiments and (b) median centering across antibodies for each sample.

ssGSEA for TCGA SKCM skin cutaneous melanomas. ssGSEA is a gene set variation analysis (GSVA) that 
provides an estimate of  pathway activity by calculating a gene set enrichment score per sample (29). We 
analyzed RNA-Seq data of  TCGA skin cutaneous melanomas (SKCM) skin cutaneous melanoma using 
the R package called GSVA (version 1.44.2) (30) with the Hoek signature of  invasion and proliferation 
and the signature of  Epgn1 (genes identified to be positively differentially expressed in our previous study 
accessible in Supplemental Table 1.2) and Epgn3 (genes identified to be negatively differentially expressed 
in our previous study accessible in Supplemental Table 1.2) (2, 14). We assigned for each sample the status 
of  invasion, proliferation, Epgn1, and Epgn3 when we identified an enrichment of  their signatures through 
ssGSEA. We observed that some samples could have both positive or negative invasion and proliferation 
signatures as well as both positive or negative Epgn1 and Epgn3 signatures, showing that they are not mutu-
ally exclusive signatures. We then performed an enrichment analysis to identify enrichment of  invasion and 
Epgn3 as well as proliferation and Epgn1 in the TCGA SKCM samples.

Gene expression analysis on tissue samples. Total RNA was extracted from four 10 μm curls of  FFPE 
tissue with the RecoverAll Total Nucleic Acid Isolation Kit (Invitrogen). The RNA integrity number 
(RIN) of  each sample was determined using the 2100 Bioanalyzer instrument (Agilent Technologies), 
and quantity was determined using Qubit (Thermo Fisher Scientific). Gene expression analysis on patient 
tissue samples as well as melanoma cell lines was performed utilizing the NanoString nCounter platform 
(NanoString Technologies). We assayed 200 ng of  total RNA utilizing a custom code set of  genes con-
sisting of  118 of  our 122 epigenetic gene signature that we reported previously (14), TP53 family genes, 
and housekeeping genes (Supplemental Table 1.2). The nSolver analysis software version 4.0 (NanoString 
Technologies) was used to extract raw digital counts of  expression, check the quality of  the data, and 
generate heatmaps.

Prognostic risk score model to identify low-risk (Epgn1) versus high-risk (Epgn3) groups. In an effort to deter-
mine a minimal gene set that was able to discriminate between our 2 cohorts (Epgn1 versus Epgn3), we 
began by identifying the genes correlated with OS and PFS by performing the univariate Cox analysis on 
the 118 genes with P < 0.05 and using normalized data by NanoString’s method. To select genes with a 
strong prognostic value, eliminate the correlation between genes, create a prognostic risk score model, and 
prevent overfitting of  the final model, we then evaluated gene expression signatures by 2 reduction meth-
ods, relaxed least absolute shrinkage and section operator (LASSO) with 50-fold cross-validation using 
“glmnet” R library (version 4.0-2) and stepwise variable selection procedure (with iterations between the 
“forward” and “backward” steps) using “My.stepwise” R library (version 0.1.0). The coefficient of  each 
gene estimated in the final model was used as a coefficient for the prognostic risk score model, such as

Risk Score =
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Based on the prognostic risk score model, we computed the risk score for each patient in 205 new sam-
ples and 24 JCI samples (Supplemental Table 2.3 and ref. 14). To test the accuracy of  the models and identi-
fy the threshold to split the cohort into low-risk (Epgn1-like) and high-risk (Epgn3-line) groups, we used the 
gene expression of  our 24 individuals previously annotated in our original discovery cohort. Kaplan-Meier 
survival curves were used to evaluate whether there was a significant difference between the low-risk and 
high-risk groups by a log-rank test with P < 0.05. A confusion matrix was established to describe the per-
formance of  a classification model on JCI data (Supplemental Table 2.3 and ref. 14), which we previously 
annotated as Epgn1, Epgn2, or Epgn3.

Whole cell protein extraction and immunoblotting. Whole cell protein lysates were made from cell pellets, 
resuspended in 1× cell lysis buffer (Cell Signaling Technology) supplemented with protease inhibitors 
(Roche) and phosphate inhibitors (Roche), incubated at 4°C for 30 minutes with shaking, and centrifuged for 
10 minutes at 24,375g at 4°C. Protein concentrations were determined by Qubit, and lysates were adjusted 
with lysis buffer to normalize the protein concentrations. Proteins (25–50 μg/lane) were subjected to SDS-
PAGE, transferred to a PVDF membrane by standard Western blotting conditions, blocked in 5% milk/
PBST for 1 hour, and incubated with primary antibodies (1:1,000 in blocking buffer) overnight at 4°C. The 
secondary antibody (1:2,500 in blocking buffer) was incubated at room temperature for 1 hour before stan-
dard, enhanced chemiluminescence detection. Blots were stripped with Restore Plus Western blot stripping 
buffer (Thermo Fisher Scientific), reblocked, and reprobed using an appropriate loading control.

Chromatin extraction for immunoblotting of  histone modifications. Cells were resuspended in 1 mL Buffer 
A (10 mM HEPES [pH 7.9] [Thermo Fisher Scientific], 10 mM KCl [Invitrogen], 1.5 mM MgCl2 [Invitro-
gen], 0.34M sucrose [Thermo Fisher Scientific], and 10% glycerol [Thermo Fisher Scientific] with 1 mM 
DTT [Invitrogen], protease inhibitors [Roche], and 0.1% Triton X-100 [Thermo Fisher Scientific]). Fol-
lowing a 10-minute incubation on ice, cells were spun at 4,000 rpm at 4°C for 5 minutes. The supernatant 
(cytoplasm) was removed, and the nuclear pellet was washed with 1 mL buffer A and 1 mM DTT. Cells 
were spun at 4,000 rpm at 4 °C for 5 minutes, and nuclei were resuspended in a salt-free buffer containing 
3 mM EDTA and 0.2 mM EGTA for 45 minutes with shaking. Following a final spin at 1,500g at 4°C for 5 
minutes, the resulting chromatin pellet was solubilized in Laemelli buffer with 50 mM DTT and boiled prior 
to loading on a gel for immunoblotting.

IHC. Slides were baked overnight at 37°C, followed by deparaffinization in xylene and rehydration in 
ethanol. Heat-induced epitope retrieval was performed at pH 9 (Dako Target Retrieval Solution, S2367) for 
30 minutes, pigmentation was removed using Pretreatment Solutions A and B (Polysciences), and endog-
enous peroxidase was removed with 3% H2O2. Serum-Free Protein Block (Dako, X909) was added for 30 
minutes, followed by 30-minute incubation with the primary antibody H3K27ac (Abcam, 177178) dilut-
ed in Antibody Diluent with Background Reducing Components (Dako, S3022). Slides were incubated 
with the anti-rabbit secondary antibody for 30 minutes and streptavidin/HRP (Dako, P0397) for 30 min-
utes. Slides were developed using SignalStain DAB Chromagen. Images were taken on a Nikon Eclipse Ci 
microscope and analyzed using NIS-Elements BR Analysis software.

ChIP-Seq. ChIP samples were processed as previously described (15), with several modifications. For 
H3K27ac ChIP (Abcam, 177178), 10 million cells per sample were cross-linked with 1% formaldehyde for 
10 minutes at room temperature. Cross-linked cells were quenched with 0.125M glycine for 5 minutes at 
room temperature, followed by pelleting at 400g for 3 minutes at 4°C. Cells were washed once with ice-cold 
PBS and resuspended at 10 million cells in 500 μL of  cell lysis buffer (10 mM Tris [pH 8], 10 mM NaCl, 
0.2% NP-40, 100 nM PMSF, supplemented with protease inhibitors), followed by 15 minutes of  incubation 
on ice. Next, cells were centrifuged at 400g for 5 minutes at 4°C and resuspended in 500 μL cold nuclear lysis 
buffer (50 mM Tris [pH 8], 10 mM EDTA, 1% SDS, 100 nM PMSF, supplemented with protease inhibitors) 
and incubated on ice for 10 minutes. Cells were sonicated for 22 cycles — 30 seconds on, 30 seconds off  — 
at low intensity in a Bioruptor sonicator (Diagenode). After sonication, samples were centrifuged at 13,000g 
for 10 minutes at 4°C, and the supernatant-containing chromatin was diluted 1:4 with i.p. Dilution Buffer 
(20 mM Tris [pH 8], 2 mM EDTA, 150 mM NaCl, 1% Triton-X, 0.01% SDS, 100 nM PMSF, supplemented 
with protease inhibitors). Chromatin was precleared with protein A+G (MilliporeSigma) magnetic beads 
preconjugated with rabbit IgG for 2 hours at 4°C. After preclearing, 50 μL of  chromatin was saved as input 
control. Drosophila spike-in chromatin was added to the precleared chromatin in equal amounts across sam-
ples to allow sample to sample comparison. A preconjugated antibody (5 μg, H3K27ac, Abcam, 177178) 
was added to the precleared chromatin and rotated overnight at 4°C. Following overnight incubation, beads 
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were washed once with cold i.p. Wash I Buffer (20 mM Tris [pH 8], 2 mM EDTA, 50 mM NaCl, 1% Tri-
ton-X, 0.1% SDS, 100 nM PMSF, supplemented with protease inhibitors), twice with cold High-Salt Buffer 
(20 mM Tris [pH 8], 2 mM EDTA, 500 mM NaCl, 1% Triton-X, 0.01% SDS, 100 nM PMSF, supplemented 
with protease inhibitors), once with cold i.p. Wash II Buffer (10 mM Tris [pH 8], 1 mM EDTA, 0.25 LiCl, 1% 
NP-40, 1% deoxycholic acid, 100 nM PMSF supplemented with protease inhibitors), and twice with cold TE 
buffer (5 mM Tris [pH 7.4], 1 mM EDTA). DNA was eluted twice in 100 μL elution buffer (1% SDS, 100 mM 
NaHCO3) at 65°C for 30 minutes at 800 rpm in a thermomixer. For input, 130 μL TE buffer, 12 μL 5M NaCl, 
20 μL 10% SDS, and 2 μL of RNase A (10 mg/mL) were added, followed by overnight incubation at 65°C to 
reverse cross-link. For the ChIP samples, 12 μL of 5M NaCl and 2 μL of RNase A (10 mg/mL) was added, 
followed by overnight incubation at 65˚C to reverse cross-link. Proteinase K (4 μL at 20 mg/mL) was added, 
and samples were incubated for 2 hours at 42°C. DNA was purified using the Qiagen MinElute PCR Purifica-
tion Kit following the manufacturer’s protocol. DNA sequencing libraries were prepared using the NEBNext 
Ultra II DNA Library Prep Kit for Illumina (NEB). Libraries were analyzed for concentration by Qubit and 
samples were run on an Agilent2000 DNA HS Bioanalyzer Chip. The libraries were then sequenced on the 
NextSeq500 system (Illumina) using a 75-bp single-end protocol. The sequencing was performed at the Onco-
logical Sciences Core Facility of  the Icahn School of  Medicine at Mount Sinai.

ChIP-Seq alignment and peak calling. Reads were aligned to the human reference genome hg19 using 
Bowtie v1.1.2 (31) with parameters –l 40 –n 2 –best –k 1 –m 1, and read quality was assessed using fastQC 
(32). Duplicate reads were removed with PICARD v2.2.4 (Broad Institute). Binary alignment maps (BAM) 
files were generated with samtools v1.9 (33) and used in downstream analysis. MACS2 v2.1.0 (34) was 
used to call significant peaks (H3K27ac, q < 1 × 10–11). Peaks within ENCODE blacklisted regions were 
removed. Coverage tracks were generated from BAM files using deepTools 3.2.1 (35) bamCoverage with 
parameters –scaleFactor X and –binsize 10. The normalization scale factor was calculated for each sample 
based on the Drosophila deduplicated uniquely aligned reads as previously described (36).

ChIP-Seq differential enrichment analysis. Significant H3K27ac peaks for all 4 cell lines (WM35, 
WM1552C, YUCHIME, YUPEET) were merged to generate a master regions file. The DiffBind package 
(37) was used to identify differentially bound sites within the master regions file. BAM files of  ChIP input 
and Drosophila H2AV ChIP were included for normalization. Significant differentially enriched regions 
were determined using P < 0.05. Differential enhancers and super-enhancers were called using the same 
methodology described above, utilizing a master enhancer or super-enhancer regions file.

Enhancer and super-enhancer calling and gene associations, and TF motif  analysis. Enhancers and super-en-
hancers were called based on H3K27ac enrichment using the ROSE algorithm (Rank Ordering of  Super-en-
hancers) (16, 38) with a parameter stitching distance of  12.5 kb. ChIP inputs were used as a control. Dif-
ferential enhancers/super-enhancers were associated with positively correlated promoters of  differentially 
expressed genes within a genomic range of  ± 1,000 kb. TF binding motif  enrichments of  differential enhancers 
were generated using the HOMER v.4.11 suites (39). De novo motifs were identified within a 200 bp win-
dow around the peak center with the following parameters findMotifsGenome.pl hg19 -size 200 with the 
default HOMER-generated background regions. TF binding predictions of  the ITGA3 super-enhancer were 
performed on the intersections of  the super-enhancer region and ATAC-Seq summits from melanoma cell 
line SKmel147 (15). TF binding predictions were identified within a 200 bp window around an ATAC peak 
summit utilizing the Transcription Factor Affinity Prediction Web Tools (40) with the parameter’s matrix 
jaspar_vertebrates and background model:human_promoters.

RNA-Seq of  cell lines transfected with siRNA. siRNA constructs were obtained from Horizon (ON-TAR-
GETplus Human siRNA SMARTPool). Transient transfections were performed in 6-well tissue culture 
plates using 5 μL siRNA (20 μM) and 5 μL DharmaFECT1 transfection reagent per well. Transfection 
media were replaced after 7 hours, and cell lysates were harvested 72 hours following transfection. We first 
assessed the quality of  paired-end reads with FASTQC (v0.11.8). Next, we filtered reads with BBDUK 
from BBTOOLS (v37.53) to remove adapters, and known artifacts, and quality trimmed (Phred quality 
score < 10). Reads that became too short after trimming (n < 60 bp) were discarded. Singleton reads (i.e., 
reads whose mate has been discarded) were not retained. We estimated the transcript-level quantification 
of  cleaned RNA-Seq data using SALMON (v1.0.0) by a quasimapping on Homo sapiens transcriptome 
GRCh38_gencode.v22. We evaluated the gene-level quantification using the tximport library and con-
verted 22,231 human gene expressions. Differential expression was assessed for cell cultures transfected 
with siRNA constructs (siControl versus siITGA3) using the R DESeq2 library (v1.81.1) (26). We called 
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differential expression between 2 conditions when the adjusted P value was at 5% and log2 fold change 
was more than 1.

Proliferation and invasion assays. Cells were seeded in 6-well tissue culture plates (160,000 cells per well) 
in quadruplicate for harvesting at each time point. At each harvest time point (24, 48, 72, and 96 hours after 
cell seeding), 4 wells per cell line were trypsinized and counted using the Countess automated cell counter 
(Invitrogen). Cells were transfected with pooled siRNA against ITGA3 for 48 hours. On the day of  cell seed-
ing, invasion plates with Matrigel-coated inserts (Corning, 354480) were equilibrated by adding cell culture 
medium into the wells and inserts and were incubated for 2 hours at 37°C. Cells were collected, counted, 
and resuspended in a serum-free medium, and 500,000 cells were seeded into each insert in a final volume 
of  500 μL. A complete growth medium with 20% FBS was inserted as a chemoattractant in the bottom 
well. Seeded cells were incubated for 24 hours at 37°C. For analysis, the medium in the inserts was aspi-
rated and the upper layer of  the membrane was cleaned with cotton swabs to remove the cells that failed 
to migrate and the matrigel. Following fixation with MeOH and staining with crystal violet, inserts were 
removed and mounted on a glass slide. Image acquisition of  the membranes with the invaded cells was 
made on a Nikon Eclipse Ci microscope, and cell counts were determined manually using ImageJ (NIH).

Association of  ITGA3 gene expression and clinical data from TCGA SKCM. We analyzed the bulk RNA-Seq 
and clinical data of  TCGA SKCM from the Broad Institute GDAC Firehose (https://gdac.broadinstitute.
org/) and performed Mann-Whitney U test between different tumor stages.

Generation of  luciferase-expressing CRISPR KO cell lines. Stable luciferase expression was established in 
SKmel147 cells by transfection with the MSCV luciferase PGK-hygro plasmid (Addgene, plasmid 18782) 
using the Transduce IT lentivirus transduction reagent (Mirus, 6620). Following a 2-week selection with 
hygromycin B (Invitrogen), the cells were expanded, and luciferase expression was confirmed by biolumi-
nescence imaging. To generate ITGA3 KO YUMMER1.7 (BrafV600E/WT, Pten–/– Cdkn2–/–) and SKmel147 
cell lines, the ITGA3 sgRNAs were cloned into the Cas9 containing lentiCRISPRv2 (Addgene, 52961) 
vector system following the published protocol (41, 42). To produce lentiviral particles, HEK293T cells at 
80% confluency in a 10 cm tissue culture dish were cotransfected with 5 μg of  lentiviral expression con-
structs, 3.75 μg of  psPAX2 (Addgene, 12260), and 1.25 μg pMD2.G (Addgene, 12259) vectors using the 
TransIT-Lenti Reagent (Mirus, 6650) transfection reagent. Cell-free supernatant was harvested at 48 hours 
after transfection and was used to transduce YUMMER1.7 and SKmel147 cells (Mirus, 6620). Cells were 
selected with puromycin (2 μg/mL) following lentiviral infection. KO of  ITGA3 was validated by Western 
blot. We used the clone for in vivo experiments, resulting in completely abolished ITGA3 expression.

Animal experiments. Experimental protocols were approved by the IACUC of  the Icahn School of  Med-
icine at Mount Sinai and New York University. Six-week-old male C57BL/6J mice and 6-week-old female 
NOD/SCID/IL2γR−/− mice (The Jackson Laboratory, catalog 05557) were used for in vivo studies. To 
study tumor growth, 1 × 106 YUMMER1.7 murine melanoma cells were injected s.c. into the flanks of  
each C57BL/6J mouse. Tumor volumes were calculated using the following equation: 0.5 × l × w2. To 
examine lung metastasis, 1.5 × 105 SKmel147 human melanoma cells were i.v. injected into the lateral tail 
vein of  each NOD/SCID/IL2γR−/− mouse. For the analysis of  liver metastasis, 5 × 104 SKmel147 human 
melanoma cells were delivered into each NOD/SCID/IL2γR−/− mouse by intracardiac injection. Biolu-
minescence imaging was performed using the Xenogen IVIS 200 (Perkin-Elmer) once per week until the 
experimental end point. Images were quantified using Living Image software. The mice were anesthetized 
with 2.5% isoflurane prior to imaging and then injected with 150 mg/kg D-luciferin i.p. (Perkin-Elmer). 
Exposure time was adjusted to avoid pixel saturation. A total bioluminescence flux (photons/second) was 
calculated for each region of  interest (ROI).

Data availability. All omics data are under Super Series at GEO (GSE198432). The RNA-Seq files of  
the experiments are available at GEO (GSE198425 for Next-Generation Sequencing of  Primary Melano-
cytes, Epgn1, and Epgn3 Melanoma Cell lines; GSE198426 for siRNA ITGA3/control in SKmel147; and 
GSE198427 for siRNA ITGA3/control in YUCHIME). Nanostring data for human samples and cell lines 
are available at GEO (GSE198429, GSE198430, and GSE198431). ChIP-Seq data are available at GEO 
(GSE197235). The RPPA data of  our 15 melanoma cell lines are available at GEO (GSE198428). Values 
for all data points in graphs are reported in the Supporting Data Values file.

Statistics. RNA-Seq experiments were performed with 3 replicates. A 2-tailed unpaired t test was used 
when comparing 2 groups, 1- or 2-way ANOVA was used for multiple comparisons, and either Mann 
Whitney U test or log-rank test was used for survival analysis. Statistical analyses were performed using R 
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version 4.0.2 (2020-06-22). Differentially expressed genes identified by Deseq2 are significant if  q < 0.05 
(Benjamini-Hochberg multitesting correction). We used Fisher’s exact test to analyze contingency tables.

Study approval. Deidentified melanoma tissue samples were processed as approved by our IRB proto-
cols. Animal experiments were performed after obtaining IACUC approval from Icahn School of  Medicine 
at Mount Sinai and NYU Grossman School of  Medicine.
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